For each citation that was shared on social media (LinkedIn, Facebook, or Twitter) with the “@GenScript” tag, the author will be rewarded with a $10 Amazon gift card or 2,000 GS points.

Biochemical Characterization of the Highly Thermostable β-Xylosidase from Caldicellulosiruptor saccharolyticus

ohiolink. 2019; 
Dilan Karunathilaka Wellalage Don
Products/Services Used Details Operation
Peptide Synthesis This research characterizes glycoside hydrolase enzymes from the extreme thermophilic bacterium Caldicellulosiruptor saccharolyticus, which are predicted to possess the ability to degrade xylan into the fermentable sugar xylose. Thermostable β-xylosidase encoded by Csac_2409 of GH39 from C. saccharolyticus was recombinantly expressed by GenScript and the protein purified to 75% purity. Get A Quote

Abstract

There has recently been an increasing focus on the conversion of lignocellulosic biomass to biofuel as an alternative to petroleum. The current bottleneck for the process is efficient hydrolysis of lignocellulose into simple sugar molecules for fermentation to ethanol. Xylan represents the major hemicellulose in plants and is identified as the second most abundant polysaccharide on earth. The complete degradation of xylan requires several enzymes working synergistically, including endoxylanases and β-xylosidases. β-xylosidases are capable of hydrolyzing xylo-oligosaccharides to xylose. Thermostable β-xylosidases are more desirable in biofuel production due to their ability to withstand harsh process conditio... More

Keywords